Σε φιλοσοφικό επίπεδο, η εξίσωση αυτή του Μπόλτζμαν εσωκλείει πλήρως το πνεύμα της αρχής της αναγωγής: ότι δηλαδή οι ιδιότητες ενός σύνθετού σώματος-συστήματος μπορούν να ερμηνευτούν (ή αν θέλετε πηγάζουν) από τις ιδιότητες των επί μέρους τμημάτων που το αποτελούν. Το εντυπωσιακό με την εξίσωση αυτή (ή καλύτερα ένα από τα εντυπωσιακά χαρακτηριστικά αυτής της εξίσωσης) είναι πως «αδιαφορεί πλήρως» για την φύση των υποκείμενων νόμων που διέπουν το σύστημα, δεν την ενδιαφέρει καθόλου εάν η δυναμική ή οι νόμοι που δημιουργούν τις πιθανές διατάξεις είναι κλασικοί ή κβαντικοί!
Στο σημείο αυτό είναι απαραίτητη μια διευκρίνιση: η έννοια της πιθανότητας κλασικά και κβαντικά είναι διαφορετική. Στην κλασική φυσική οι πιθανότητες αποτελούν υποκειμενική έννοια που μεταβάλλεται διαρκώς καθώς μεταβάλλεται η γνώση για ένα σύστημα. Για παράδειγμα η πιθανότητα όταν ρίξουμε ένα νόμισμα να έρθει «γράμματα» είναι ½ πριν την ρίψη ενώ μετά την ρίψη και την ανάγνωση του αποτελέσματος αυτή η πιθανότητα γίνεται 1 (αν έρθει γράμματα) ή 0 (αν έρθει κεφάλι). Εάν υπήρχε ένα ον (που αποκαλείται «δαίμονας του Λαπλάς» προς τιμή του μεγάλου Γάλλου μαθηματικού Πιέρ- Σιμόν Λαπλάς) που γνώριζε κάποια χρονική στιγμή την θέση και την ταχύτητα όλων των σωματιδίων στο σύμπαν, τότε θα μπορούσε να προβλέψει με απόλυτη ακρίβεια την εξέλιξή τους μαζί με όλα τα επακολουθούμενα φαινόμενα και δεν θα είχε ανάγκη τις πιθανότητες.
Στον κβαντικό κόσμο όμως οι πιθανότητες εμφανίζονται λόγω μιας εγγενούς αβεβαιότητας των ίδιων των φυσικών νόμων. Οι καταστάσεις των φυσικών συστημάτων στην κβαντική φυσική περιγράφονται με κάποιους «καταλόγους πληροφοριών» όπως τους ονόμασε ένας από τους πρωτοπόρους της κβαντομηχανικής, ο Έργουιν Σρέντιγγερ (επίσης Αυστριακός σαν τον Μπόλτζμαν και τον Γκέντελ, η ιερή τριάδα της Αυστρίας στον τομέα της επιστήμης). Οι κατάλογοι πληροφοριών όμως έχουν μια ιδιαιτερότητα: αν προσθέσεις πληροφορία σε κάποια σελίδα, αυτομάτως θαμπώνουν και ξεγράφονται πληροφορίες κάπου αλλού, σε κάποιες άλλες σελίδες. Για παράδειγμα αν προσθέσεις πληροφορία για να προσδιορίσεις με μεγαλύτερη ακρίβεια την θέση ενός σωματιδίου σε ένα σύστημα, αυτομάτως θα χαθεί πληροφορία (ακρίβεια) στον προσδιορισμό της ταχύτητας (αρχή απροσδιοριστίας). Οι κβαντικές πιθανότητες είναι συνεπώς αντικειμενικές υπό την έννοια πως δεν είναι δυνατόν να απαλειφθούν εντελώς εμπλουτίζοντας την πληροφόρηση.
Η παραπάνω θεώρηση όμως έχει δραματικές συνέπειες για την κλασική θεμελίωση της θερμοδυναμικής. Κλασικά, ο δεύτερος θερμοδυναμικός νόμος δεν είναι παρά μια έκφραση μιας ανικανότητας, μιας αδυναμίας που διατυπώνεται με την εξίσωση του Μπόλτζμαν: Δεν υπάρχει κάποια βαθειά φυσική αρχή από πίσω, αποτελεί απλώς μια έκφραση για την, άλλως μη δυνάμενη να ερμηνευτεί, ανικανότητα να προβλέψουμε πλήρως το τι θα συμβεί παρά την περί του αντιθέτου διαβεβαίωση των κλασικών νόμων. Όμως αυτό αλλάζει όταν μπει η κβαντομηχανική στο κάδρο διότι τότε αναγκαζόμαστε να υιοθετήσουμε την άποψη ότι η αβεβαιότητα είναι συνυφασμένη με την πραγματικότητα, αποτελεί δομικό συστατικό αυτής και συνεπώς η εντροπία και η θερμοδυναμική αποκτούν πιο θεμελιώδη βάση. Με βάση τις εργασίες των Μάρκους Μύλερ (Ινστιτούτο Περίμετερ Οντάριο Καναδάς), Όσκαρ Ντάλστεν (Κέντρο Κβαντικών Τεχνολογιών Σιγκαπούρη) και Βλάτκο Βέντραλ (Πανεπιστήμιο της Οξφόρδης, Αγγλία) αποδεικνύεται ότι η κρίσιμη σχέση μεταξύ πληροφορίας και αταξίας όπως ποσοτικοποιείται από τον ορισμό της εντροπίας επιβιώνει και στον κβαντικό κόσμο.
Λαμβάνοντας υπόψη όλα τα παραπάνω αρχίζουμε να καταλαβαίνουμε γιατί η θερμοδυναμική είναι τόσο επιτυχημένη και ανθεκτική θεωρία: οι ρίζες της σχετίζονται με την θεωρία πληροφορίας. Η θεωρία πληροφορίας αποτελεί την ενσάρκωση του τρόπου που αλληλεπιδρούμε με το σύμπαν, πως κατασκευάζουμε θεωρίες για την πληρέστερη κατανόηση των φυσικών νόμων. Σύμφωνα με τον Αϊνστάιν η θερμοδυναμική αποτελεί «μετα-θεωρία» (ή μια 2-κατηγορία σύμφωνα με τα σύγχρονα μαθηματικά): αποτελείται από αρχές πέρα και πάνω από τις δομές ή τους φυσικούς νόμους που διέπουν τις άλλες θεωρίες. Υπό αυτή την έννοια ίσως είναι πιο θεμελιώδης από την κβαντική φυσική ή την σχετικότητα. Ακολουθώντας αυτή τη γραμμή, η θερμοδυναμική ίσως αποδειχθεί πολύτιμη στην εξερεύνηση της νέας φυσικής μιας και όπως σχεδόν όλοι αναγνωρίζουν, το πιο πιθανό είναι πως ούτε η σχετικότητα αλλά ούτε και η κβαντομηχανική δεν αποτελούν την τελευταία επανάσταση της φυσικής.
Για παράδειγμα, πριν λίγους μήνες, οι Έσθερ Χένγκι και Στέφανη Γουένερ στην Σιγκαπούρη απέδειξαν ότι αν παραβιαστεί η αρχή της αβεβαιότητας, αυτό συνεπάγεται και την παραβίαση του δεύτερου θερμοδυναμικού νόμου. Αν ξεπεραστεί το όριο του Χάιζενμπεργκ στην ακρίβεια προσδιορισμού θέσης και ορμής, αυτό θα σημάνει την εξαγωγή επιπρόσθετης πληροφορίας σχετικά με το σύστημα πράγμα που ισοδύναμα απαιτεί το σύστημα να προσφέρει περισσότερο ωφέλιμο έργο απ’ ότι του επιτρέπει ο βαθμός αταξίας (εντροπία) που έχει. Συνεπώς εάν η θερμοδυναμική αποτελεί κάποιο είδος «οδοδείκτη» για την μελλοντική φυσική, οποιαδήποτε μετεξέλιξη της κβαντομηχανικής αναγκαστικά θα περιέχει κάποια μορφή αρχής απροσδιοριστίας και αβεβαιότητας. Μάλιστα ο καθηγητής Ντέιβιντ Ντόιτς του πανεπιστημίου της Οξφόρδης και πατέρας των κβαντικών υπολογιστών προχωρά ακόμη πιο πέρα και θεωρεί πως όλη η φυσική θα πρέπει ουσιαστικά να ξαναγραφτεί ως αντίγραφο της θερμοδυναμικής. Η ιδέα είναι να ξεκινήσουμε από την αυστηρή έκφραση του δεύτερου θερμοδυναμικού νόμου όπως διατυπώθηκε από τον Κωνσταντίνο Καραθεοδωρή το 1909: στην γειτονιά οποιασδήποτε κατάστασης ενός φυσικού συστήματος υπάρχουν καταστάσεις που δεν μπορεί το σύστημα να βρεθεί εάν απαγορευτεί η ανταλλαγή θερμότητας με το περιβάλλον.
Το θέμα συνεπώς είναι εάν είναι δυνατή μια διατύπωση της φυσικής μέσω μιας απλής απαρίθμησης πιθανών (δυνατών) και απίθανων (αδύνατων) διαδικασιών σε μια δεδομένη κατάσταση. Αυτό είναι κάτι πολύ διαφορετικό από την σημερινή διατύπωση τόσο της κλασικής όσο και της κβαντικής φυσικής όπου χρησιμοποιούνται αρχικές καταστάσεις και κατάλληλες δυναμικές εξισώσεις που εκφράζουν τις χρονικές μεταβολές αυτών. Αντιστρέφοντας την λογική, ξεκινάμε από τις φυσικές παρατηρήσεις και εφαρμόζουμε τους περιορισμούς που επιβάλει η φύση, όπως μείωση της εντροπίας, παραγωγή ενέργειας από το τίποτε, σωματίδια που κινούνται με ταχύτητα μεγαλύτερη του φωτός κλπ. Η λογικά πιο «στενή» σωστή ενοποιημένη φυσική θεωρία τότε θα είναι αυτή από την οποία η παραμικρή παρέκκλιση οδηγεί σε παραβίαση κάποιων περιορισμών.
Υπάρχουν και άλλα πλεονεκτήματα στην επαναδιατύπωση της φυσικής με την παραπάνω λογική: Ο χρόνος αποτελεί μια προβληματική έννοια στη φυσική. Στην κβαντική θεωρία ο χρόνος αποτελεί μια εξωτερική παράμετρο με ασαφή προέλευση που δεν υφίσταται κβάντωση (μιας και δεν υπάρχει ακόμη κβαντική θεωρία για την βαρύτητα). Στην θερμοδυναμική όμως ο χρόνος δεν αποτελεί παρά ένα διαφορετικό όνομα για την αύξηση της εντροπίας: Για παράδειγμα έχουμε ένα ποτήρι σε ένα τραπέζι, φυσά ο αέρας, ρίχνει κάτω το ποτήρι και σπάζει σε πολλά κομμάτια (αύξηση αταξίας, εντροπίας). Μείωση εντροπίας θα σήμαινε να ξανακολλήσουν από μόνα τους τα κομμάτια και να σχηματίσουν το ποτήρι. Κάτι τέτοιο θα ήταν σαν να είχαμε βιντεοσκοπήσει το συμβάν και παίζαμε το βίντεο ανάποδα, δηλαδή να γυρίζει ο χρόνος πίσω.
Αν εφαρμόσουμε αυτή την αρχή γενικότερα, τότε ο χρόνος θα έπαυε να υπάρχει ως ανεξάρτητη θεμελιώδης οντότητα και η ροή του θα καθοριζόταν αποκλειστικά με βάση τις επιτρεπτές και μη επιτρεπτές φυσικές διαδικασίες. Ταυτόχρονα θα εξαφανίζονταν τα προβλήματα που αναφέραμε προηγουμένως (γιατί το σύμπαν ξεκίνησε σε κατάσταση ελάχιστης εντροπίας). Εάν οι καταστάσεις και η δυναμική χρονική τους εξέλιξη δεν αποτελούσαν το κομβικό ερώτημα τότε ο,τιδήποτε δεν παραβαίνει κάποιες θεμελιώδεις συμμετρίες θα αποτελούσε πιθανή απάντηση (μια παρόμοια προσέγγιση για παράδειγμα υιοθετεί ο μεγάλος Ρώσος, με Βελγική υπηκοότητα, τιμημένος με το βραβείο Νομπέλ Χημείας επιστήμονας Ίλια Πριγκοζίν).
Μια τέτοια προσέγγιση πιθανώς θα ικανοποιούσε και τον Αϊνστάιν που κάποτε είχε πει: «Αυτό που με ενδιαφέρει περισσότερα να μάθω είναι εάν ο Θεός είχε επιλογή στην δημιουργία των νόμων που διέπουν την λειτουργία αυτού του κόσμου». Μια διατύπωση της φυσικής στα πρότυπα της θερμοδυναμικής ίσως δεν απαντούσε άμεσα την παραπάνω ερώτηση αλλά θα σήμαινε σίγουρα πως ο Θεός θα ήταν οπαδός της θερμοδυναμικής και για τους επιστήμονες που δάμασαν την δύναμη του ατμού τον 19ο αιώνα αυτό θα ήταν ο μεγαλύτερος έπαινος: θα είχαν «προφητεύσει» την βασική κρυμμένη αρχή που διέπει τους νόμους του σύμπαντος.